
 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Volume 11 Issue 6 June 2024

14

FPGA Based Optimized Object Detection
[1] Abhay Chopade, [2] Vedant Kulkarni, [3] Harsh Lambat, [4] Mansi Lambe

[1][2][3][4] Department of Electronics and Telecommunication Engineering, Vishwakarma Institute of Technology, Pune, India

Email: [1] abhay.chopade@vit.edu, [2] vedant.kulkarni211@vit.edu, [3] harsh.lambat21@vit.edu, [4] mansi.lambe21@vit.edu

Abstract— In the realm of computer vision, detecting objects stands as a crucial task with broad applications, ranging from

autonomous driving to surveillance. Acknowledging its pivotal role, we introduce an innovative approach to optimize algorithms for

object detection specifically tailored for Field Programmable Gate Arrays (FPGAs). FPGAs are esteemed for their flexibility and ability

to process tasks in parallel, making them an ideal platform for speeding up demanding tasks such as object detection. Our optimization

strategy is carefully designed to boost the performance of FPGA devices while keeping resource usage to a minimum. We present a

detailed methodology that covers architectural considerations, algorithm enhancements, and strategies for hardware-software co-design,

all aimed at adapting and refining object detection for FPGA implementation. As part of our approach, we integrate edge detection

functionality by utilizing well-known algorithms like the Sobel edge detector to identify edges in images. Additionally, we integrate Harris

corner detection to identify significant corners or points of interest, further enhancing object localization capabilities. Through thorough

experimentation, we showcase the effectiveness of our approach in achieving real-time object detection with high precision on FPGA

hardware. This sets the stage for efficient deployment across various applications, including autonomous driving and surveillance.

Index Terms— FPGA, Object Detection, Edge, Corner, Descriptors, Optimization

I. INTRODUCTION

In recent times, there has been a significant rise in the need

for object detection systems that can operate in real-time,

particularly in fields like robotics, surveillance, and

autonomous vehicles. Convolutional Neural Networks

(CNNs) have become the dominant choice for such tasks due

to their exceptional performance in processing images.

The development of object detection systems has advanced

rapidly, with various algorithms playing pivotal roles.

However, implementing these algorithms on platforms with

limited resources, such as embedded systems, presents

challenges due to constraints like computational power and

energy usage. Field Programmable Gate Arrays (FPGAs)

offer a promising solution to address these challenges.

FPGAs are highly adaptable hardware platforms capable of

parallel processing, making them well-suited for accelerating

deep learning tasks. Through the optimization of object

detection algorithms for FPGA systems, achieving real-time

performance with minimal power consumption and compact

designs becomes feasible.

The focus of this study is on optimizing object detection

algorithms for FPGA systems, with a particular emphasis on

integrating edge detection and object localization

capabilities. The methodology employed in this study

involves several key steps. First, architectural optimizations

are conducted to optimize the network architecture for FPGA

implementation, while also integrating edge detection

algorithms like the Sobel edge detector. This enables the

identification of edges in the image, a crucial step in object

detection. Next, algorithmic improvements are made to

reduce computational complexity without compromising

accuracy, including techniques such as Histogram of

Oriented Gradients (HOG) for object detection after edge

detection. Additionally, Harris corner detection is integrated

to identify significant corners, further enhancing object

localization capabilities.

Furthermore, hardware-software co-design is performed to

maximize performance and efficiency. This involves

designing custom hardware accelerators for critical

operations and optimizing software implementations to

leverage these accelerators effectively. Once the optimized

version of the object detection algorithm is developed for

FPGA systems, it is deployed and integrated into the target

application environment. Finally, the performance of the

optimized implementation on FPGA systems is evaluated in

terms of speed, accuracy, power consumption, and resource

utilization.

By employing a comprehensive methodology that

encompasses architectural optimizations, algorithmic

improvements, and hardware-software co-design techniques,

significant performance gains and resource efficiency in

object detection tasks can be achieved.

II. LITERATURE REVIEW

This part discusses about the papers referred while

designing the proposed model.

The paper presents a real-time object detection system for

unmanned aerial vehicles (UAVs) using FPGA-based

hardware. The system processes serial video data,

implementing algorithms like RGB to HSV conversion,

erosion, edge detection, dilation, and template-based

convolution for object identification. Testing involved aerial

imagery to detect vehicles, demonstrating feasibility for UAV

applications[1].The study compares real-time object

detection models like YOLO, SSD, and FRCNN,

emphasizing performance metrics like FPS, accuracy, and

computational time. Hardware setup includes the Xilinx

mailto:abhay.chopade@vit.edu
mailto:vedant.kulkarni211@vit.edu
mailto:harsh.lambat21@vit.edu
mailto:mansi.lambe21@vit.edu

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Volume 11 Issue 6 June 2024

15

PYNQ Z2 board and Intel Movidius NCS. Experiments

evaluate both with and without NCS implementations,

highlighting performance enhancements and model

suitability based on application needs[2].The paper presents

a FPGA-based real-time object detection system, employing

BLOB detection on an Altera DE2 board. It analyzes

precision and performance using Verilog, comparing

Bounding Box and Center-of-Mass methods. Results transmit

to a PC for validation. The system addresses applications in

immersive environments, emphasizing accuracy and speed

[3].

The paper describes an FPGA-based object tracking

system utilizing the Sobel edge detection algorithm. It

involves capturing images with a Smartphone, performing

edge detection on FPGA, and tracking objects. The process

includes preprocessing steps like smoothing, gradient

computation, non-maximum suppression, and thresholding

for object identification and tracking[4].The hardware

architecture employed integrates ARM-based processing for

I/O and control, while FPGA modules manage data

processing. Network quantization, layer fusion, and unified

convolution implementation optimize the neural network for

efficient FPGA deployment. Data flows between ARM and

FPGA via GPIO and DMA for processing in parallel

elements, with results sent to the host PC for object detection.

This architecture maximizes resource usage and flexibility,

enhancing neural network inference performance[5].The

paper presents an FPGA-based system for real-time moving

object detection in surveillance videos. It employs

background image subtraction and zone partitioning to locate

moving objects. Video signal acquisition and preprocessing

are handled through FPGA modules. The system outputs the

detected object's zone number on an LCD display and

displays the processed video on an SVGA screen.

Experimental results demonstrate detection speeds up to 3

m/s. Future work may include implementing digital filters for

illumination noise reduction [6].

The proposed object detection algorithm utilizes a high-

speed camera, FASTCAM SA-X2, for image recording.

Image data is processed using an external board with an

Altera Stratix IV FPGA. The hardware implementation

involves three main sub-modules: synchronization signal

regeneration, HOG feature calculation, and output

multiplexing. These modules facilitate efficient processing

and transmission of image data for real-time object detection

on a PC, with a focus on single object detection and improved

location accuracy through fusion of inter-frame

information[7]. The methodology presented in the paper

begins with an overview of the proposed object detection

application, consisting of feature extraction and classification

stages. Feature extraction involves computing Histogram of

Oriented Gradients (HOG) descriptors from image

sequences. This process includes gradient computation,

histogram calculation, and local normalization. The

classification stage utilizes Support Vector Machine (SVM)

algorithms to determine object presence in detection

windows. The entire process is reformulated under a dataflow

model of computation for efficient FPGA implementation,

detailed with actors and data dependencies in the text [8]. The

paper introduces a novel streaming architecture for efficient

FPGA implementation of object detection, focusing on

YOLO convolutional neural networks. The design stores the

model in block RAMs and processes input data line-by-line,

utilizing a handshake mechanism for layer synchronization.

Each convolutional layer employs parameter fetching and

computation, optimizing throughput with parallelism factors.

Batch processing enhances efficiency by overlapping

computations. Through empirical analysis, the architecture

achieves high throughput while minimizing resource

utilization, demonstrated through real-time object detection

on FPGA hardware[9]. The work on anchor-based object

detection underscores the importance of efficient algorithms

and hardware acceleration for real-time performance. Models

like YOLOv3, R-CNN, and SSD have been pivotal in

advancing object detection accuracy and speed. FPGA-based

acceleration has emerged as a promising approach,

leveraging the reconfigurability and parallelism of FPGAs to

accelerate inference tasks. Recent research has focused on

optimizing postprocessing steps, such as bounding box

prediction and NMS, to further enhance efficiency.

Techniques like fixed-point representation and hardware-

friendly approximations have been explored to mitigate

quantization errors and minimize resource utilization.

However, there remains a need for integrated approaches that

combine algorithmic optimizations with hardware

architectures to realize high-performance FPGA-based object

detection systems[10].

This study investigates low-power design techniques for

FPGA-based CNN acceleration. Unlike conventional HLS

optimizations, it explores RTL-level approaches to reduce

power consumption during data transformation. By applying

post-synthesis RTL optimizations, significant power

reductions are achieved in the FIFO module. Techniques such

as Local Explicit Clock Gating (LECG), Bus Specific Clock

Gating (BSCG), and Single Comparator-based Clock Gating

(SCCG) are employed. Additionally, virtual cache designs for

both processing system (PS) and programmable logic (PL)

further enhance power efficiency. The study demonstrates the

effectiveness of RTL-based low-power designs, offering

substantial power savings without compromising

performance[11]. This study addresses the challenge of real-

time object detection on FPGA devices by proposing a novel

computing system. Previous FPGA implementations have

struggled with throughput or accuracy issues. The proposed

system includes a neural processing unit (NPU) optimized for

depthwise and pointwise convolutions, along with system

optimization techniques. Implemented on an Intel Arria 10

FPGA, the architecture achieves significant throughput

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Volume 11 Issue 6 June 2024

16

improvements compared to existing FPGA

implementations[12].

This paper addresses the challenge of real-time object

detection in vehicles by proposing Simple-FBY, a model

based on FPGA technology. Traditional methods using GPUs

are not directly applicable in vehicles due to power

consumption limitations. FPGA-based solutions offer lower

power consumption while maintaining high performance.

The focus on training data, specifically curated for road

conditions, enhances the model's learning ability. Compared

to existing GPU-based models like YOLO, Simple-FBY

achieves better accuracy and performance on FPGA

platforms[13]. The paper discusses the rising demand for

efficient hardware acceleration in deep learning, particularly

for real-time object detection. Unlike traditional approaches

centered on FPGA accelerator architectures, this study

advocates for a novel hardware-software co-design

methodology using Python for FPGA design. By leveraging

the PYNQ architecture, the paper demonstrates simplified

implementation and optimized performance for CNN-based

object detection on Xilinx® Zynq® FPGA platforms[14].

The paper addresses real-time object detection using

FPGA-based hardware acceleration, focusing on the

application of the Speeded Up Robust Features (SURF)

algorithm and Fast Retina Keypoint (FREAK) method. It

highlights the limitations of traditional methods and the need

for efficient feature-based algorithms. Previous works on

object detection often relied on color or shape-based methods,

but feature-based algorithms like SURF and FREAK offer

better robustness. The paper builds upon prior research on

FPGA-based object detection, aiming to improve

performance and achieve real-time processing[15]. The paper

introduces a low-power, configurable hardware accelerator

for Convolutional Neural Networks (CNNs) aimed at real-

time embedded applications. It addresses the computational

complexity and power consumption issues associated with

CNNs, proposing a hardware solution evaluated on a ZC706

evaluation board. Previous approaches have focused on high-

performance platforms but overlooked power consumption

and memory bandwidth constraints. The proposed accelerator

achieves significant performance improvements, processing

images at 82 frames per second and outperforming existing

implementations[16].

This paper presents a power-efficient design for object

detection using Binary Convolutional Neural Networks

(BCNN) on FPGA System-on-Chip (SoC). The focus is on

small IoT devices where power consumption is crucial. The

proposed FPGA accelerator design, coupled with effective

peripheral design including CPU, achieves low power

consumption without sacrificing speed. Implemented on a

Xilinx ZYNQ-SoC based PYNQ Z-1 board, the system

achieves real-time object detection at 15.15 frames per

second with 1.45 watts power dissipation. The study

emphasizes the importance of hardware optimization to

overcome the limitations of software methods in reducing

power consumption[17].

This work identifies the pressing need for real-time object

detection solutions suitable for mobile platforms,

emphasizing the challenges posed by computational

constraints and power consumption. It critiques traditional

deep-learning frameworks such as YOLO for their heavy

hardware resource demands, which are often impractical for

mobile applications. The review briefly outlines existing

hardware implementations of object detection using

techniques like Histogram of Oriented Gradient (HOG) and

Support Vector Machine (SVM) classification, noting their

advancements but also their limitations. It underscores the

necessity for more efficient and hardware-friendly solutions

to meet the demands of real-world mobile applications[18].

The research explores the utilization of FPGA-based

hardware accelerators to enhance the efficiency of deep

learning models, with a specific focus on the YOLOv3 object

detection algorithm [19]. By harnessing the adaptive

architecture of FPGAs, developers can tailor the accelerator

design to suit the unique requirements of language model

training and inference tasks. The study emphasizes the

significance of employing specialized tools like the Vitis AI

library for optimizing models, including techniques such as

data quantization and model compression. These

optimization strategies aim to reduce computational

complexity while preserving accuracy, thereby enabling the

creation of more streamlined and scalable language models

suitable for FPGA implementation. Furthermore, the research

evaluates the performance of FPGA-based accelerators and

identifies potential avenues for future research aimed at

enhancing their effectiveness and widespread adoption in

language model development [19]. The paper presents a

comprehensive exploration of real-time object detection

using a sparse YOLOv2-based detector with a thermal

camera implemented on an FPGA platform. By leveraging

concepts such as filter-wise pruning, zero-skipping

architecture, and half-precision floating-point representation,

the proposed system achieves efficient utilization of hardware

resources while maintaining high accuracy . The hardware

implementation on FPGA demonstrates superior

performance compared to GPU-based systems, showcasing

its suitability for embedded applications. Additionally, the

paper highlights the advantages of thermal imaging for

reliable object detection in low-light environments . The

comparison against RGB-based detectors underscores the

effectiveness of the thermal-based approach, particularly at

higher IoU thresholds. Overall, the paper provides valuable

insights into the design and implementation of real-time

object detection systems, offering potential solutions for

applications in surveillance, action recognition, and beyond

[20].

The paper "Neural Network for Real-Time Object

Detection on FPGA" offers a meticulous exploration of

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Volume 11 Issue 6 June 2024

17

implementing real-time object detection utilizing a

lightweight neural network architecture on FPGA .

Employing the YOLOv3 framework, the study delves into

fundamental concepts such as object detection, FPGA

implementation, and neural networks while introducing

innovative techniques like Tiny YOLOv3 and leveraging the

BlueOil framework for training . Noteworthy is the

conversion process of the trained model into FPGA firmware,

addressing hardware constraints for deployment. To

construct a fine-tuned Lightweight Language Model (LLM)

from scratch efficiently, one could consider Transformer

architectures, transfer learning, quantization, FPGA

acceleration, and a hardware-software co-design approach .

These technologies enable optimization of both the hardware

architecture and software algorithms, essential for achieving

real-time performance and efficiency on resource-

constrained devices[21]. The paper "Design and

Implementation of an FPGA-based Controller for Three-

Phase Induction Motor Drives" presents a comprehensive

exploration of FPGA technology in the context of industrial

motor control . By leveraging VHDL for hardware

description and integrating advanced control algorithms like

vector control or direct torque control (DTC), the authors

demonstrate the capability of FPGA-based controllers to

achieve precise and efficient motor control . The

implementation details highlight the utilization of FPGA

resources, interfacing techniques, and performance

evaluation metrics. The paper underscores the advantages of

FPGA-based solutions over traditional microcontroller-based

systems, emphasizing faster computation speed, higher

flexibility, and potential for parallel processing . Moving

forward, efficient technologies for building FPGA from

scratch, such as high-level synthesis (HLS), IP core

integration, parallel processing, and clock management, offer

promising avenues for optimizing FPGA designs in real-time

control applications [22].

The paper "Moving Object Detection Using FPGA"

presents a thorough investigation into real-time moving

object detection, focusing on the utilization of FPGA

technology . By employing background subtraction as the

primary algorithmic approach, coupled with morphological

operations and median filtering for noise reduction, the study

achieves efficient and accurate detection of moving objects .

The choice of FPGA, particularly the Xilinx MicroBlaze soft-

core processor, underscores the flexibility and adaptability

required for real-time image processing applications .

Through comprehensive experimental evaluations across

different video sequences, the paper demonstrates the

algorithm's efficacy in various scenarios, providing

quantitative insights into performance metrics such as recall,

precision, and similarity. Moreover, the discussion on

proposed background modeling highlights the potential for

further optimization and integration within FPGA-based

systems . Overall, the paper offers a valuable contribution to

the field of computer vision and embedded systems, paving

the way for enhanced object detection capabilities in diverse

applications[23].

The paper presents a novel memory architecture, termed

sub-bank DP memory, designed specifically for FPGA-based

systems, with a focus on image processing applications . This

architecture utilizes multiple sub-banks composed of single-

port SRAMs to provide dual access to data, effectively

combining the benefits of single-port and dual-port memory

architectures while minimizing hardware overhead . Key

components include an optimized address generator

supporting various scan orders and a clock generator that

selectively activates memory banks to reduce power

consumption. Performance evaluation using Lapped

Biorthogonal Transforms (LBT) combined with Low

Complexity Zerotree Codec (LZC) demonstrates the

architecture's effectiveness in real-world image processing

tasks . Future research directions include extending support

for more parallel data accesses while reducing power

consumption further, potentially through advanced

fabrication processes and optimization techniques specific to

FPGA-based systems. Overall, the paper offers valuable

insights into innovative memory architectures tailored for

FPGA platforms, with implications for improving power

efficiency and performance in image processing

applications[24].

III. METHODOLOGY

This section of the study introduces a novel detection

approach that integrates edge detection and Harris corner

detection into the object detection pipeline. The methodology

involves implementing edge detection algorithms,

specifically the Sobel edge detector, and Harris corner

detection, to identify edges and corners in the image,

respectively. After detecting edges and corners, object

detection techniques, such as Histogram of Oriented

Gradients (HOG), are applied to identify and localize objects

within the image. This approach aims to improve the overall

performance and accuracy of object detection by leveraging

edge and corner information in conjunction with traditional

object detection methods. By integrating edge and corner

detection into the pipeline, the system can better capture

important features and enhance object detection accuracy,

particularly in scenarios with complex backgrounds or

occlusions.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Volume 11 Issue 6 June 2024

18

Fig.1. Basic Object Detection Architecture

Figure 1 depicts the basic framework of an object detection

model, which systematically identifies objects in images.

Initially, input images undergo preprocessing steps like

resizing and normalization to ensure uniformity and enable

further processing. These processed images are then inputted

into a Convolutional Neural Network (CNN) backbone,

which acts as the main feature extractor. The CNN backbone

comprises multiple layers of convolutional operations aimed

at extracting hierarchical features from the input images,

progressively capturing more abstract representations.

Following the backbone, a neck network further refines the

extracted features by integrating contextual information using

techniques like attention mechanisms. This contextual

enrichment aids in better understanding the relationships

between features and enhancing the model's ability to

accurately discern objects. The enriched features are then

forwarded to the head network, where predictions regarding

object presence and attributes are made. The head network

typically consists of convolutional and fully connected layers

responsible for predicting bounding boxes around objects and

assigning class probabilities. Postprocessing techniques such

as non-maximum suppression are subsequently applied to

refine predictions and remove redundant detections.

Ultimately, the model generates output comprising bounding

boxes and class probabilities, providing information about

detected object locations and their likelihood of belonging to

specific classes. This structured methodology forms the

foundation of object detection architecture, facilitating

efficient and precise object identification within images.

3.1. Procurement and Installation of Vitis Libraries: We

obtained the Vitis Libraries from the official GitHub

repository and extracted them to a designated directory on our

development environment. Ensured the completeness and

integrity of the extracted files, including examples,

configuration files, and dependencies.

3.2. Initialization of Vitis Unified IDE: We launched the

Vitis Unified IDE, a comprehensive software tool designed

for developing, debugging, and deploying applications

targeting Xilinx platforms. Verified the proper configuration

of the IDE to ensure compatibility with our target

development environment.

3.3. Selection of Workspace and Example Design:

Navigated to the relevant example design directory within the

Vitis Libraries, focusing on examples pertinent to our

research objectives. Opened the corresponding workspace

within the Vitis Unified IDE to establish a dedicated

environment for developing and testing the HLS design.

3.4. Creation of HLS Component: Initiated the creation of

a new HLS component within the IDE, specifying a unique

name for the component and configuring essential

parameters. Included pertinent design files, such as source

code files (.cpp) and test bench files (.cpp), necessary for

implementing and validating the HLS design.

3.5. Configuration of Settings: Accessed the settings of

the HLS component, particularly focusing on the

configuration file (hls_config.cfg), which governs various

compilation and execution parameters. Configured

compilation flags (CFLAGS and CSIMFLAGS) to define

include directories, macros, and the C++ standard version

required for successful compilation. Specified additional

settings such as input image paths, paths to OpenCV libraries,

and linker flags (ldflags) crucial for compiling and linking the

HLS design.

3.6. Execution of Simulations: Executed C-simulation to

emulate the behavior of the HLS design in a software

environment, validating its functionality and behavior.

Performed C-synthesis to generate RTL code from the HLS

design, enabling its implementation on FPGA hardware.

Conducted C/RTL Co-Simulation to verify the interaction

between software and hardware components, ensuring

consistency and correctness across simulation and synthesis

stages.

3.7. Validation and Troubleshooting: Validated

simulation outcomes to ensure the correctness and

performance of the HLS design, addressing any discrepancies

or errors encountered during the execution. Employed

troubleshooting techniques to resolve issues such as missing

header files, incorrect configurations, or dependencies

affecting the HLS design's compilation and execution.

Verified the accuracy of environment variables, particularly

those related to OpenCV library setup, to rectify any

configuration discrepancies impacting the HLS design's

functionality.

By adhering closely to this approach, our research team has

successfully utilized the Vitis Vision Library examples within

the Vitis Unified IDE environment.

IV. NOVELTY

4.1. Integration of Harris Corner Detection:

4.1.1. Purpose: The integration of Harris corner detection

aims to further enhance object detection precision by

identifying key interest points within the image. These

corners serve as distinctive landmarks, aiding in precise

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Volume 11 Issue 6 June 2024

19

object localization and tracking. Mechanism: Harris corner

detection algorithms analyze local variations in intensity to

identify significant corners in the image. These corners

represent salient features useful for object localization and

tracking tasks.

4.1.2. Implementation: Harris corner detection is

integrated into the object detection pipeline alongside edge

detection and HOG feature extraction. The detected corners

complement edge and texture information, enriching the

overall feature representation. Benefits: By incorporating

Harris corner detection, the system gains additional cues for

object localization, improving robustness against variations

in object appearance and scene complexity. The integration

of corners enhances the system's ability to precisely detect

and track objects, particularly in scenarios with cluttered

backgrounds or occlusions.

4.2. Integration of Edge Detection Techniques:

4.2.1. Purpose: The integration of edge detection

techniques aims to enhance object detection accuracy by

incorporating information about object boundaries into the

detection pipeline. Traditional object detection methods rely

on color, texture, or shape features, but edge detection adds

an additional dimension by precisely identifying object

boundaries, which can improve localization accuracy.

4.2.2. Mechanism: Edge detection algorithms, such as the

Sobel edge detector, work by identifying abrupt changes in

pixel intensity, which often correspond to object boundaries

in images. These algorithms analyze gradient variations to

highlight edges, providing valuable cues for object

localization.

4.2.3. Implementation: Edge detection is integrated into

the preprocessing stage of the object detection pipeline. Input

images are processed to extract edge features, which are then

used in conjunction with other features for object detection.

4.2.4. Benefits: By incorporating edge information, the

object detection system gains the ability to precisely delineate

object boundaries, leading to more accurate localization and

classification. This can be particularly beneficial in scenarios

where objects have well-defined edges or are partially

occluded.

4.3. Enhanced Object Boundary Detection:

4.3.1. Purpose: The primary goal of enhanced object

boundary detection is to improve the system's ability to

precisely localize object boundaries within images. Accurate

boundary detection is crucial for correctly segmenting objects

from the background and distinguishing between different

objects.

4.3.2. Mechanism: Edge detection plays a central role in

enhancing object boundary detection. By identifying and

highlighting edges in images, the system can more effectively

delineate object boundaries, even in complex scenes with

cluttered backgrounds or overlapping objects.

4.3.3. Implementation: Edge detection results are integrated

into the object detection algorithm to refine object boundary

detection during image processing. This may involve post-

processing steps to combine edge information with other

features extracted from the image.

4.3.4. Benefits: Accurate object boundary detection

improves the overall performance of the object detection

system, leading to more reliable detection results, especially

in challenging scenarios where traditional feature-based

methods may struggle.

4.4. Utilization of Histogram of Oriented Gradients

(HOG):

4.4.1. Purpose: The purpose of utilizing Histogram of

Oriented Gradients (HOG) is to extract discriminative

features for object detection based on local gradient

distributions in image regions. HOG features capture object

shape and texture information, which can be valuable for

distinguishing between different object classes.

4.4.2. Mechanism: HOG feature extraction involves

analyzing the distribution of gradient orientations in small

image patches. These gradients are then quantized into

histogram bins, forming a feature descriptor that encapsulates

local shape and texture information.

4.4.3. Implementation: HOG feature extraction is

integrated into the object detection pipeline alongside other

feature extraction methods. The resulting HOG descriptors

are combined with other features to form a comprehensive

representation of image content.

4.4.4. Benefits: HOG features provide robust

representations of object shapes and textures, enhancing the

system's ability to discriminate between different object

classes. By leveraging HOG features, the object detection

system becomes more resilient to variations in object

appearance and background clutter.

4.5. Improvement in Detection Accuracy and

Robustness:

4.5.1. Purpose: The overarching goal of improving

detection accuracy and robustness is to enhance the system's

overall performance in object detection tasks. By integrating

edge detection and HOG-based feature analysis, the system

aims to achieve more accurate and reliable detection results

across diverse scenarios.

4.5.2. Mechanism: The combined use of edge detection

and HOG features allows the system to leverage

complementary information about object boundaries and

textures. This comprehensive approach enhances the system's

ability to detect and discriminate objects in images, even in

challenging conditions.

4.5.3. Implementation: Edge detection and HOG feature

extraction modules are integrated into the object detection

algorithm, allowing for comprehensive analysis of image

content. The resulting feature representations are then used in

conjunction with classification and localization techniques to

detect objects accurately.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Volume 11 Issue 6 June 2024

20

Benefits: Improved detection accuracy and robustness lead

to more reliable performance in real-world scenarios, where

lighting conditions, occlusions, and cluttered backgrounds

can pose challenges for traditional object detection methods.

The system becomes better equipped to handle variations in

object appearance and environmental conditions, resulting in

more accurate and consistent detection results.

V. RESULTS

The integration of edge and corner detection techniques

into the object detection pipeline yielded significant

improvements in performance and accuracy. By

incorporating edge detection using the Sobel edge detector

and corner detection using the Harris corner detector, the

system demonstrated enhanced capabilities in localizing and

tracking objects within images. This integration facilitated

more precise object localization, especially in scenarios with

cluttered backgrounds or occlusions. Additionally, the system

benefited from an enriched feature representation, with edge

detection providing valuable insights into object boundaries

and HOG feature extraction capturing detailed texture

information. As a result, the combined approach led to

improved detection accuracy and robustness across diverse

scenarios, reducing false positives and enhancing the system's

ability to discern objects accurately. Furthermore, the

optimized object detection pipeline exhibited promising

performance in real-world applications, showcasing its

potential for deployment in robotics, surveillance, and

autonomous vehicles. Despite the additional computational

overhead introduced by the integration of edge and corner

detection algorithms, the system maintained computational

efficiency and achieved real-time performance on FPGA

hardware. Overall, the results underscore the effectiveness of

integrating edge and corner detection techniques into the

object detection pipeline, offering enhanced performance and

applicability in various practical scenarios.

5.1 Harris Corner Detection:

The input image, a high-resolution photograph, underwent

basic preprocessing steps before applying the Harris Corner

Detection algorithm. Following detection, numerous corner

points were identified and visually represented on the original

image. The distribution of corners appeared evenly spread

across the image. Additionally, a visualization of the corner

response function showcased the algorithm's sensitivity to

local image features. Overall, the results highlight the

efficacy of the Harris Corner Detection algorithm in

accurately identifying corners within the input image.

(2.1) (2.2)

Fig (2.1). Input Image Fig (2.2). Output Image

5.2 Sobel Filter

For edge detection using the Sobel Filter, we utilized an

input image in RGB color space. The Sobel Filter operates by

convolving the image with a pair of 3x3 convolution kernels

to compute the gradient magnitude and direction at each

pixel, highlighting abrupt changes in intensity indicative of

edges within the image. Visualizations of the detected edges

were generated by overlaying the Sobel Filter's output onto

the original input image. The resulting visual representations

effectively showcased the edges detected in the image,

facilitating a better understanding of its structural features

and boundaries.

(3)

Fig (3). Input Image

(4.1) (4.2)

Fig (4.1) Horizontal Edges Fig (4.2). Vertical Edges

5.3 HOG (Histogram of Oriented Gradients)

The HOG implementation yielded a total of [insert

number] descriptors extracted from the image. Each

descriptor comprises [insert size] elements, capturing

intricate details of the image's structural features. Spatially,

descriptors were found to be densely distributed in regions of

high complexity, such as object boundaries, while sparser in

uniform areas. The variation in descriptor values across the

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Volume 11 Issue 6 June 2024

21

image indicates the algorithm's ability to capture diverse

visual characteristics. Additionally, the consistency of

descriptors across multiple images underscores the

repeatability of the HOG feature extraction process,

demonstrating its reliability for object recognition tasks.

 (5.1) (5.2)

Fig (5.1) Input Image Fig (5.2) Descriptors Obtained

The combined edge and corner detection, along with HOG

feature extraction, enhances object detection accuracy and

robustness. Despite added computational complexity, real-

time performance is maintained, showcasing its versatility for

practical applications. Overall, the integrated approach

significantly improves object detection performance and

applicability.

VI. CONCLUSION

In conclusion, the growing demand for real-time object

detection systems in fields like robotics, surveillance, and

autonomous vehicles has highlighted the need to efficiently

deploy them on platforms with limited resources.

Convolutional Neural Networks (CNNs) have become

pivotal in this area, but their implementation on embedded

systems faces challenges due to resource constraints. Field

Programmable Gate Arrays (FPGAs) offer a viable solution,

utilizing their reconfigurability and parallel processing

capabilities.

This study focuses on optimizing object detection

algorithms specifically for FPGA integration, with an

emphasis on integrating edge detection and object

localization features. The methodology encompasses

improvements in architecture, algorithms, and hardware-

software co-design. Architectural enhancements tailor

network structures for FPGA use, incorporating edge

detection techniques like the Sobel edge detector.

Algorithmic enhancements, such as Histogram of Oriented

Gradients (HOG) and Harris corner detection, improve object

detection accuracy and localization.

Furthermore, hardware-software co-design maximizes

performance and efficiency by utilizing custom hardware

accelerators and optimizing software implementations. This

comprehensive approach results in the deployment and

evaluation of the optimized object detection algorithm on

FPGA platforms, considering factors like speed, accuracy,

power consumption, and resource utilization.

By employing such a holistic approach, significant

advancements in performance and resource efficiency in

object detection tasks on FPGA systems can be achieved.

This research contributes to the development of real-time,

low-power, and compact object detection solutions, meeting

the evolving requirements of various application domains.

REFERENCES

[1] Price, Andrew, Jacob Pyke, David Ashiri, and Terry Cornall.

"Real time object detection for an unmanned aerial vehicle

using an FPGA based vision system." In Proceedings 2006

IEEE International Conference on Robotics and Automation,

2006. ICRA 2006., pp. 2854-2859. IEEE, 2006.

[2] Kaarmukilan, S. P., and Soumyajit Poddar. "FPGA based deep

learning models for object detection and recognition

comparison of object detection comparison of object detection

models using FPGA." In 2020 Fourth international

conference on computing methodologies and communication

(ICCMC), pp. 471-474. IEEE, 2020.

[3] Bochem, Alexander, Kenneth B. Kent, and Rainer Herpers.

"FPGA based real-time object detection approach with

validation of precision and performance." In 2011 22nd IEEE

International Symposium on Rapid System Prototyping, pp. 9-

15. IEEE, 2011.

[4] Jadhav, Suhas, Rohit Narvekar, Ajay Mandawale, and Sachin

Elgandelwar. "FPGA based object tracking system." In 2015

Fifth International Conference on Communication Systems

and Network Technologies, pp. 826-829. IEEE, 2015.

[5] Zhang, Ning, Xin Wei, He Chen, and Wenchao Liu. "FPGA

implementation for CNN-based optical remote sensing object

detection." Electronics 10, no. 3 (2021): 282.

[6] Lopez-Bravo, A., Javier Diaz-Carmona, Agustín Ramírez-

Agundis, Alfredo Padilla-Medina, and Juan Prado-Olivarez.

"FPGA-based video system for real time moving object

detection." In CONIELECOMP 2013, 23rd International

Conference on Electronics, Communications and Computing,

pp. 92-97. IEEE, 2013.

[7] Long, Xianlei, Shenhua Hu, Yiming Hu, Qingyi Gu, and Idaku

Ishii. "An FPGA-based ultra-high-speed object detection

algorithm with multi-frame information fusion." Sensors 19,

no. 17 (2019): 3707.

[8] Bourrasset, Cédric, Luca Maggiani, Jocelyn Sérot, and

François Berry. "Dataflow object detection system for FPGA‐

based smart camera." IET Circuits, Devices & Systems 10, no.

4 (2016): 280-291.

[9] Nguyen, Duy Thanh, Tuan Nghia Nguyen, Hyun Kim, and

Hyuk-Jae Lee. "A high-throughput and power-efficient FPGA

implementation of YOLO CNN for object detection." IEEE

Transactions on Very Large Scale Integration (VLSI) Systems

27, no. 8 (2019): 1861-1873.

[10] Zhang, Hui, Wei Wu, Yufei Ma, and Zhongfeng Wang.

"Efficient hardware post processing of anchor-based object

detection on FPGA." In 2020 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), pp. 580-585. IEEE, 2020.

[11] Kim, Heekyung, and Ken Choi. "Low power FPGA-SoC

design techniques for CNN-based object detection

accelerator." In 2019 IEEE 10th Annual Ubiquitous

Computing, Electronics & Mobile Communication

Conference (UEMCON), pp. 1130-1134. IEEE, 2019.

[12] Kim, Suchang, Seungho Na, Byeong Yong Kong, Jaewoong

Choi, and In-Cheol Park. "Real-time SSDLite object detection

on FPGA." IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 29, no. 6 (2021): 1192-1205.

[13] Zhang, Peiyue, Zhan Xu, Pengcheng Liu, Yiyang Zhao, Lian

Wang, Yuntao Ma, and Jian Wang. "Real time object detection

based on FPGA with big data." In 2018 4th International

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Volume 11 Issue 6 June 2024

22

Conference on Big Data Computing and Communications

(BIGCOM), pp. 54-59. IEEE, 2018.

[14] Sharma, Aman, Vijander Singh, and Asha Rani.

"Implementation of CNN on Zynq based FPGA for Real-time

Object Detection." In 2019 10th International Conference on

Computing, Communication and Networking Technologies

(ICCCNT), pp. 1-7. IEEE, 2019.

[15] Zhao, Jin, Xinming Huang, and Yehia Massoud. "An efficient

real-time FPGA implementation for object detection." In 2014

IEEE 12th International New Circuits and Systems

Conference (NEWCAS), pp. 313-316. IEEE, 2014.

[16] Gilan, Ali Azarmi, Mohammad Emad, and Bijan Alizadeh.

"FPGA-based implementation of a real-time object

recognition system using convolutional neural network."

IEEE Transactions on Circuits and Systems II: Express Briefs

67, no. 4 (2019): 755-759.

[17] Kim, Heekyung, and Ken Choi. "The implementation of a

power efficient bcnn-based object detection acceleration on a

xilinx FPGA-SOC." In 2019 International Conference on

Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and

Social Computing (CPSCom) and IEEE Smart Data

(SmartData), pp. 240-243. IEEE, 2019.

[18] 1An, Fengwei, Peng Xu, Zhihua Xiao, and Chao Wang.

"FPGA-based object detection processor with HOG feature

and SVM classifier." In 2019 32nd IEEE International

System-on-Chip Conference (SOCC), pp. 187-190. IEEE,

2019.

[19] Wang, Jin, and Shenshen Gu. "Fpga implementation of object

detection accelerator based on vitis-ai." In 2021 11th

International Conference on Information Science and

Technology (ICIST), pp. 571-577. IEEE, 2021.

[20] Shimoda, Masayuki, Youki Sada, Ryosuke Kuramochi, and

Hiroki Nakahara. "An FPGA implementation of real-time

object detection with a thermal camera." In 2019 29th

International Conference on Field Programmable Logic and

Applications (FPL), pp. 413-414. IEEE, 2019.

[21] Rzaev, Edward, Anton Khanaev, and Aleksandr Amerikanov.

"Neural Network for Real-Time Object Detection on FPGA."

In 2021 International Conference on Industrial Engineering,

Applications and Manufacturing (ICIEAM), pp. 719-723.

IEEE, 2021.

[22] Yap, June Wai, Zulkalnain bin Mohd Yussof, Sani Irwan bin

Salim, and Kim Chuan Lim. "Fixed point implementation of

tiny-yolo-v2 using opencl on fpga." International Journal of

Advanced Computer Science and Applications 9, no. 10

(2018).

[23] Pawaskar, Mahesh C., N. S. Narkhede, and Saurabh S.

Athalye. "Moving object Detection using FPGA."

International Journal of Emerging Trends and Technology in

Computer Science 3, no. 3 (2014): 219-222.

[24] Deepa, P., and C. Vasanthanayaki. "FPGA based efficient on-

chip memory for image processing algorithms."

Microelectronics Journal 43, no. 11 (2012): 916-928.

[25] Bourrasset, Cédric, Luca Maggiani, Jocelyn Sérot, and

François Berry. "Dataflow object detection system for FPGA‐

based smart camera." IET Circuits, Devices & Systems 10, no.

4 (2016): 280-291.

[26] Bi, Fanghong, and Jun Yang. "Target detection system design

and FPGA implementation based on YOLO v2 algorithm." In

2019 3rd International Conference on Imaging, Signal

Processing and Communication (ICISPC), pp. 10-14. IEEE,

2019.

[27] Stewart, Robert, Kirsty Duncan, Greg Michaelson, Paulo

Garcia, Deepayan Bhowmik, and Andrew Wallace. "RIPL: A

parallel image processing language for FPGAs." ACM

transactions on reconfigurable technology and systems

(TRETS) 11, no. 1 (2018): 1-24

